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Abstract

Direct assessment of patient samples holds unprecedented potential in the treatment of

cancer. Circulating tumor cells (CTCs) in liquid biopsies are a rapidly evolving source of pri-

mary cells in the clinic and are ideal candidates for functional assays to uncover real-time

tumor information in real-time. However, a lack of routines allowing direct and active interro-

gation of CTCs directly from liquid biopsy samples represents a bottleneck for the transla-

tional use of liquid biopsies in clinical settings. To address this, we present a workflow for

using a microfluidic vortex-assisted electroporation system designed for the functional

assessment of CTCs purified from blood. Validation of this approach was assessed through

drug response assays on wild-type (HCC827 wt) and gefitinib-resistant (HCC827 GR6) non-

small cell lung cancer (NSCLC) cells. HCC827 cells trapped within microscale vortices were

electroporated to sequentially deliver drug agents into the cytosol. Electroporation condi-

tions facilitating multi-agent delivery were characterized for both cell lines using an auto-

matic single-cell image fluorescence intensity algorithm. HCC827 GR6 cells spiked into the

blood to emulate drug-resistant CTCs were able to be collected with high purity, demonstrat-

ing the ability of the device to minimize background cell impact for downstream sensitive cell

assays. Using our proposed workflow, drug agent combinations to restore gefitinib sensitiv-

ity reflected the anticipated cytotoxic response. Taken together, these results represent a

microfluidics multi-drug screening panel workflow that can enable functional interrogation of

patient CTCs in situ, thereby accelerating the clinical standardization of liquid biopsies.

Introduction

Liquid biopsies are rapidly emerging as a paradigm shift in clinical cancer treatment for their

potential in non-invasive, longitudinal surveillance of patient disease prognosis [1–3]. Liquid

biopsies can be performed using bodily fluid samples, ranging from pleural effusions,
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cerebrospinal fluid, urine, and blood, thereby representing a wide array of tumor-associated

information that can be measured for tracking the progression of the disease [4]. The valuable

analytics within liquid biopsy samples include intact cells, cell-free nucleic acid, and extracellu-

lar vesicles shed directly by tumors to colonize multiple secondary tumor sites. As an alterna-

tive source for primary cells, liquid biopsies overcome several key limitations of traditional

solid tumor biopsies that necessitate this shift. First, depending on the anatomical location or

inadequate size of the tumor, surgical biopsies isolate limited selections of the tumor and place

a significant burden on the patients themselves. Second, liquid biopsies encompass a broader

pool of malignant cells in circulation shed by the primary and secondary tumors and therefore

reflect a more comprehensive cross-section of heterogenetic tumor properties. More impor-

tantly, solid biopsies reference a temporal window at the time of sampling, which may factor

out important changes in the arc of disease progression. As tumors have been observed to

exhibit a highly dynamic molecular landscape [5–7], longitudinal monitoring of tumor hetero-

geneity, genomic evolution, and disease progression are pivotal for making informed clinical

decisions and directing appropriate therapeutic avenues during the course of treatment.

For their functional role in orchestrating the metastatic cascade, CTCs found in peripheral

blood samples are one of the cornerstones for liquid biopsy analysis [8, 9]. CTCs are cancer

cells shed directly from primary and secondary tumors into the circulatory system and are

well-documented to be harbingers of the metastatic cascade [10, 11]. During the first 24 hours

of extravasation, CTCs represent comprehensive snapshots of real-time tumor progression

[12, 13], providing an instrumental window for tracking the tumor state in real-time. How-

ever, clinical practices using liquid biopsies are limited because CTCs are obscured from the

high background from billions of blood cells (1–100 CTCs per 1 mL whole blood [14, 15]).

Purification challenges exacerbate the establishment of standardized operating procedures and

workflows and thus remain the principle roadblock for adapting routine patient liquid biopsy

testing in the clinic.

Advancements in cell enrichment techniques have generated a plethora of data detailing

the molecular and functional characteristics of CTCs. In response to treatment for multiple

types of solid cancers, expression patterns of CTC biomarkers shift dynamically which suggests

that CTC biomarker analysis can be an effective measure of therapeutic response [16–19]. This

is particularly significant because through epigenetic mutations and selective pressure from

treatment, tumor cells that are in a constant state of genetic evolution can develop subclones

that are resistant to front-line therapies [7, 20–22]. Because these cells represent a live temporal

window, stable cell lines of CTCs have been generated in vitro for tumor characterization

applications. These cell lines can further be developed into functional models for drug suscep-

tibility testing against a library of chemotherapeutic agents or to recapitulate tumorigenic

behavior in xenografted mice models [23–28]. Limited success rate and prolonged processing

time to establish these cell lines from isolated CTCs hinder their overall clinical translation, as

culture passaging further induces phenotype and genotype altercations in derived cell lines

that may not accurately depict the native tumor physiological state. Nonetheless, these critical

results demonstrate that short-term drug screening and functional evaluation of CTCs are pos-

sible. Despite limited compatibility with liquid biopsy samples due to their rare cell count,

existing drug-screening platforms utilizing patient tumor cells [29–31] also underscore this

necessity in probing primary cell populations for identifying tailored therapeutic options. As a

valuable primary cell source, systems capable of directly assaying CTCs in patient liquid biopsy

samples for functional interrogation are essential to accelerate the clinical adaptation of liquid

biopsies.

We have previously reported platforms trapping viable cells in suspension with an electro-

poration-based transfection system for delivering combinations of exogenous biomolecules at
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controlled quantities [32, 33]. Vortex-based rare cell isolation techniques for target cell separa-

tion using size-based biophysical markers have enabled both enrichment and collection of

intact cells. Electroporation of these trapped cells reversibly permeates the cell membrane and

precisely mediates the delivery of a vast multitude of biomolecules such as drugs, ribonucleic

acids (RNAs), and plasmids. Furthermore, microscale electroporation is particularly useful

when documenting responses from rare and sensitive cells to combinatorial anticancer thera-

peutic agents, which could have vastly contrasting cell membrane transport properties. Addi-

tionally, on-chip cell trapping, sequential electroporation, and controlled release of

concentrated cells eliminates various pipetting steps typically needed to perform functional

assays involving multiple reagents, thereby eliminating issues with retaining rare cell counts.

Utilizing this coupled system, we report an extended electroporation workflow that processes

complex body fluid for direct assessment of viable target cells. To demonstrate its clinical

applicability, we describe a routine for performing drug response assay onto cancer cells spiked

into blood samples. As proof of concept for clinical translation using patient blood samples,

we detail a procedure using drug-resistant cell line HCC827 GR6 spiked into the blood for sub-

sequent enrichment and drug response screening. We envision our system as a powerful work-

flow for processing valuable information from viable CTCs to complement the utility of liquid

biopsies in guiding clinical therapeutic decisions (Fig 1a).

Materials and methods

Chip fabrication

The channel geometry and operational procedure of the device are adapted from our previ-

ously reported vortex-assisted cell electroporation system [32]. The microfluidic

Fig 1. Overview of workflow for assessing drug response from cancer cells. (a) Schematic workflow for directly assaying diseased cells from patient

liquid biopsy samples for subsequent drug combination screening. Cell-trapping PDMS microfluidic chambers (turquoise) and Au electrode arrays

(gold) of the assembled device allow cell purification from blood and subsequent drug response analysis (b) Overhead photograph of the device. The

device consists of an inlet region accommodating multiple solution ports with coarse filter for blocking debris, inertial focusing region for size-based

focusing of larger cancer cells from smaller blood-borne contaminant cells, and cell trapping region (10x4 chamber arrangements) fitted with patterned

microelectrodes (10 planar microarrays per chamber) for cytosolic delivery of bioreagents via electroporation. Scale bar represents 5 mm. (c)

Representative time-lapse panel images of the integrated process consisting of 1. cell trapping, 2. flushing away blood cells, 3. visualization of vortices, 4.

molecular incubation, 5. visual confirmation of successful electroporation, and 6. merged microscopic image of both background blood cell (white

arrow) and a viable, electroporated cancer cell (black arrow), indicated by overlapping red (Propidium Iodide) and green (Calcein AM) fluorescent

signals. Scale bar represents 100 μm for panels 1. - 5. and 50 μm for panel 6.

https://doi.org/10.1371/journal.pone.0264907.g001
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electroporation device was designed using AutoCAD (Autodesk, Inc., USA), and the micro-

fluidic channel and electrode photomasks were printed and purchased from Photo-Sciences

(Photo Sciences Inc., USA). The gold electrodes on plain glass slides (VWR, USA) were pat-

terned by spin coating positive photoresist (SPR 220–3, Rohn Haas, USA) layer. SPR 220–3

was spin-coated onto the glass slides at 2000 rpm for 50 seconds ramping at a rate of 100 rpm/

s. The glass slides were then baked on a 115 ˚C hot plate for 5 minutes, then on a 65 ˚C hot

plate for 3 minutes. The electrode pattern was then fabricated on these glass slides by following

conventional photolithography procedures (EV620) and developed under CD-26 developer

(Microposit CD-26, Rohn Haas, USA) for 60 seconds followed by immersion in DI water.

Electrodes were deposited using an electron beam deposition tool (Sharon Vacuum CVS-6

Evaporator, USA) at a vacuum environment of 6e-6 torr and depositing 10 nm thick chromium

and 300 nm thick gold layers sequentially (Kurt J Lesker, USA). The sacrificial layers of elec-

trodes were lifted off by sonication in an acetone bath for 5 minutes.

The casting mold for the microfluidic channel was fabricated using a negative photoresist

(KMPR 1050, Microchem, USA) following standard photolithography procedures. Targeted

heights (70–80 μm) of the fabricated microstructures were validated using a surface profil-

ometer (Keyence VK X250). Poly(dimethylsiloxane) (PDMS; Sylgard 184 silicone elastomer

kit, Dow Corning, USA) replicas were generated using a 5:1 ratio of PDMS and curing agent.

PDMS was degassed for 1 hr and cured at room temperature for 48 hrs. Cured PDMS replicas

were removed from the mold, and solution injections and outlet holes were created by using a

pin vise (Pin vise set A, Syneo). Microfluidic channels and the fabricated electrode glass slides

were treated with oxygen plasma (Technics MicroRIE, USA), aligned, and irreversibly bonded

to the electrodes onto the electrodes (Fig 1b).

Device operation

Cells in suspension are inertially focused, trapped, and contained within micro vortices formed

inside the trapping chambers and subsequently electroporated for cytosolic delivery. Electro-

poration is visualized in real-time by the delivery of cell-impermeable dye, allowing for rapid

modification of electroporation parameters to optimize electroporation performance (Fig 1c).

Real-time visualization of fluorescent orbit traces from electroporated cells is shown in S1 Fig.

The trapping region was designed to select larger (>10 μm[1]) cancer cells from smaller blood

cells (2–10 μm [34–36]).

Cell line and culture

The epidermal growth factor receptor (EGFR)-mutant NSCLC cell line, HCC827, and gefitinib

resistant line, HCC827 GR6, were kindly provided by Dr. Pasi A. Jänne’s group at the Dana-

Farber Cancer Institute. While HCC827 wt cells demonstrate sensitivity to gefitinib, a tyrosine

kinase inhibitor (TKI) targeting EGFR, HCC827 GR6 cells are resistant to gefitinib. PHA-

665752, a c-MET inhibitor, restores gefitinib sensitivity in HCC827 GR6 cells [37]. The growth

media for both HCC827 cell lines were composed of Roswell Park Memorial Institute 1640

(RPMI 1640, Gibco1, Life technologies, USA) supplemented with 10% (v/v) heat-inactivated

fetal bovine serum (HI-FBS, Gibco1, Life technologies, USA) and 1% penicillin-streptomycin

(Sigma-Aldrich Co., USA). HCC827 GR6 cells were cultured in 1 μM gefitinib every ten pas-

sages to selectively screen drug resistance colonies. Cells were passaged at 70% confluency and

subcultured into T-75 flasks (VWR, USA) in 10 mL of growth media at a ratio of 1:5. Cells

were grown in a humidified incubator according to the supplier’s protocol at 37˚C in a humid-

ified 5% CO2 environment. Media was exchanged to fresh complete media bi-weekly. Cells
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were harvested by treating with 0.25% trypsin-EDTA (Gibco1, Life technologies, USA) for 3

minutes.

Cell suspension preparation

Cells were pelleted by centrifugation at 1100 rpm for 5 min and resuspended into 2 mL fresh

growth media before passing the suspension through cell strainers (40 μm Scienceware

FlowMi, Bel-Art, USA) to remove external debris that may clog the microchannels within the

device. Cell suspensions were diluted in fresh media to have a final concentration of 5 × 104

cells/mL for electroporation experiments. For fluorescent-based electroporation experiments,

cells were stained with the nucleus indicator NucBlue™ Live ReadyProbes™ Reagent (Hoechst

33342, Invitrogen, USA) following manufacturer protocol prior to electroporation.

Solution exchange

Similar to a previously described pneumatic flow control system [32, 33, 38], a custom-built

electronic pneumatic flow control unit was used to regulate pressurization of nitrogen gas

(AirGas, USA) into control solution vials containing DPBS wash buffer (HyClone, Cytiva,

USA) and drug solutions. Briefly, the system consists of 4 electro-pneumatic regulators

(ITV0030-3UBS, SMC Pneumatics, only three were used for the current study) controlled by

custom-written LabView software. 40 psi (equivalent to about 1.0 mL/min flow rate) and five

psi were used for injecting pressure and idle pressure, respectively, for these solution vials to

minimize pressure buildup and subsequent backflow back into the solution vials. The solution

vials were linked to the inlet ports of the PDMS chip via PEEK tubings (1/32” OD, 0.020” ID,

IDEX, USA) and were fitted with inline check valves (IDEX, USA) to further impede

backflow.

Prepared cell suspensions both in media and blood were injected into the microfluidic

device with Standard Infuse/Withdraw Syringe Pump (Harvard Apparatus). For the cell sus-

pension PEEK tubing into the inlet port, a manual shut-off valve assembly (IDEX, USA) was

fitted instead of the inline check valve to block backflow. The manual shut-off valve was

opened during the cell trapping step and shut promptly after. Prior to the inflow of cell sam-

ples, stable trapping vortices were established in the device by flowing wash buffer solution at

40 psi for 30 seconds. For experiments with cell suspensions in media, the syringe pump was

programmed to infuse at a rate of 1.2 mL/min for 50 seconds, followed by a withdrawal rate of

0.5 mL/min for 30 seconds. For experiments with cell suspensions in diluted whole blood, the

syringe pump was programmed to infuse at a rate of 1.0 mL/min for 180 seconds, followed by

a withdrawal rate of 0.5 mL/min for 30 seconds. Prior to solution exchange and electropora-

tion, cells were briefly flushed with wash buffer at 40 psi for 60 seconds to remove cells not

trapped within vortices from the entire device.

A transition dual-flow of solution vials at 40 psi for 10 s was done when switching between

solutions, as abrupt on-off switching may fluctuate the flow rate into the device and adversely

affect stability of the vortex. Switching between solutions this way ensures that the flow rate

throughout the device, at any point, is sufficient to retain cell trapping.

Electroporation procedure

Promptly after cell trapping, trains of electric pulses were applied to the electrode by using a

compact and programmable custom-built AC square wave pulse generator. The standard elec-

trical parameters used for all the experiments described in this manuscript were set as 10

square wave pulses with frequency, f = 20 kHz, pulse width, τ = 1ms, and pulse interval, Δt = 1

s. The electrical field in the microfluidic chamber was generated using a custom-built signal
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generator. Briefly, a power supply (E3630A Triple Output DC, Hewlett Packard, USA) pro-

vided the desired voltage to a transistor H-Bridge. The square pulse, frequency, duration, pulse

width, and interval were all controlled by a microprocessor (MSP430F5529, Texas Instru-

ments, USA). Pulses were also tracked using an oscilloscope (Agilent, USA). The finite-ele-

ment method (FEM) was used to simulate the electric field generated via electroporation

(COMSOL Multiphysics v4.4, Electric Currents Package) [32]. Reported electric field intensi-

ties are from a height Z = 60 μm from the base of the electrodes.

Prior to cell collection, the device and containing trapped cells were briefly flushed with the

neutral DPBS wash buffer solution (30 s) at 40 psi to primarily flush away residual reagents

that may inadvertently be collected with the cells in the well-plate and interfere with accurate

electroporation efficiency assessment. The processed cells were collected from the outlet PEEK

tubing directly onto 96-well plates by lowering the wash buffer pressure from 40 psi to 5 psi for

10 s, then back to 40 psi for 5 s.

Fluorescent microscope imaging

in situ observation and imaging of the electroporation process were monitored using an

inverted microscope (Eclipse Ti, Nikon Inc., Japan) equipped with a mercury Epi-fluorescent

light source (Intensilight, Nikon Inc., Japan), fluorescent filter cube sets, and a CCD camera

(Clara, Andor, USA). Entire 96 well-plate fluorescent images were obtained using the 10x

objective to obtain and stitch automated multi-point captures using in-house software (NIS-E-

lements, Nikon Inc., Japan).

Quantitative analyses for electroporation efficiency

A combination of Fiji (ImageJ) and CellProfiler [39] software was used for determining elec-

troporation efficiency in fluorescent molecule delivery experiments. For these experiments,

trapped cells were electroporated and then incubated in membrane-impermeant nucleus dye

solution for 40 seconds. After flushing with wash buffer, cells were collected onto clear 96-well

plates and then incubated in Calcein acetoxymethyl (AM) for 20 min before centrifuging (180

g, 5 min) and resuspension in DPBS for whole-well fluorescent imaging (<1 hr).

A custom-built image analysis pipeline generated 2D fluorescent intensity maps from indi-

vidual cells collected post-electroporation to assist with electroporation efficiency assessment.

Gate intensity values for determining cell viability and successful electroporation were set

using intensity values emitted from conventional well plate images of cell populations incu-

bated in the same concentrations of fluorescent molecules. S2 Fig shows an example of the

generated intensity maps along with applied input voltages. The low amount of collected cells

(< 1k cells per run) precludes direct analysis of our collected samples with flow cytometry.

Briefly, coordinate locations of individual cells were mapped using Fiji to generate single-

cell crops of individual cells using Python (Spyder-IDE, MIT). These batch crop images were

processed for qualitative fluorescent intensity measurements using CellProfiler (CellProfiler,

Broad Institute). Only cells with recognizable Hoechst signals (indicating the presence of a via-

ble nucleus prior to electroporation) were analyzed for FITC and TRITC intensity measure-

ments. Aberrantly recognized signals or images with overlapping cells were manually

examined and removed. The background-subtracted intensity values from each cell were plot-

ted on a 2D fluorescence intensity map. Threshold intensities for successful electroporation

from nucleus-binding dye were defined to be greater than IMean+2σ, where IMean and σ are the

average intensity and standard deviation from the live cell populations in the control group

(i.e., fluorescent intensities of membrane-impermeant nucleus dye emitted by more than 95%

of the live cells in the control group were lower than the threshold). Thresholds for cell viability
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were defined as the maximum Calcein signals emitted from the dead cell populations in the

control group to minimize false positives in the electroporation quadrant. Calculations of

transfection efficiency, cell viability, and collected cell counts were calculated using formulas

as previously described [32, 38].

Drug preparation

Gefitinib (S1025) and PHA-665752 (S1070) were reconstituted in DMSO (Selleck Chem,

USA). Reconstituted stock drug solutions were diluted in DPBS (>1000x) for electroporation

experiments. For drug electroporation experiments, cells were electroporated and incubated in

drug solutions with total drug solute flown during the duration matching control well plate

experiments (i.e., 1, 0.2 μM for gefitinib and PHA-665752, respectively, in 100 μL total vol-

ume). Therefore, electroporation experiments were conducted by flowing solution vials con-

taining gefitinib and PHA-665752 at concentrations of 100 and 20 nM, respectively, at 40 psi

for 60 s each, either as single agents or sequentially for combination assessment, onto trapped

HCC827 GR6 and wt cells.

Cell viability measurements

Cell viability was reported using a non-lytic bioluminescence assay measuring the reducing

potential of metabolically active cells [40]. Promptly after electroporation and incubation in

drug solutions, cells were collected in wash buffer onto white opaque assay well plates and cen-

trifuged (180 g, 5 min) using a well-plate centrifuge (LMC-3000, Grant). Collected cells were

resuspended in complete RPMI media containing 1x RealTime-Glo™ MT Cell Viability assay

reagent (Promega). The viability of cells post-electroporation was measured every 24 hours

using Cytation 5 (BioTek, Agilent) plate reader over the course of 72 hours in a continuous

read format. Due to the natural variance in collected cell count per electroporation run, fold-

change for each drug condition was calculated by dividing luminescence readings from every

24 hrs to the initial 0 hr readings. This fold-change was compared to the fold-change observed

from cells electroporated without drug incubation and reported as % viability. Minimal vari-

ance in the fold-change of intensity values were observed in calibration wells plated with a

wide range of cells, suggesting that the cell density variation effects onto fold-change in cell

chemiluminescence are negligible (S5 Fig).

Spiked blood preparation

In order to demonstrate circulating tumor cell isolation from a patient’s blood sample, 1mL of

cells in suspension for electroporation were spiked into 20x diluted healthy whole blood (Zen-

Bio, USA). The total number of cancer cells for each blood sample was spiked to be 5 × 104

cells. DPBS (Gibco1, Life technologies, USA) was used to dilute the sample to a final volume

of 3 mL. Spiked blood samples were freshly prepared prior to each electroporation run to min-

imize interactions between patients’ native WBC and spiked cancer cells.

Cell purity assessment

To assess the purity of collected cells from blood-borne contaminants, HCC827 GR6 cells

were labeled with Calcein AM following manufacturer protocol after trypsinization and spiked

into the blood. After trapping and subsequent collection onto clear 96-well plates, cells were

incubated in NucBlue following manufacturer protocol before centrifuging (180 g, 5 min) and

resuspension in DPBS for whole-well fluorescent imaging (<1 hr). Cancer cells were identified

as cells staining positively for both Calcein and NucBlue, WBCs were identified as cells
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staining positively for NucBlue only, and RBCs were identified by their morphology from

brightfield images.

Statistical analysis

All statistical analyses and curve-fitting were conducted in Prism 8 (GraphPad, San Diego,

CA) and Excel (Microsoft, Redmond, WA). Results are expressed as mean ± standard error of

the mean (mean ± SEM). Comparisons of all experimental data sets were analyzed with one-

way ANOVA followed by the Dunnett post-hoc test for multiple comparisons. A p-value < 0.1

was considered statistically significant for this study.

Results and discussion

Electroporation parameter optimization

Optimal electroporation conditions for the reversible permeabilization of HCC827 wt and

GR6 were first identified using membrane-impermeable biomolecules prior to drug electropo-

ration experiments. Molecular delivery of membrane-impermeant nucleus dyes (Propidium

Iodide, 15 μM, Invitrogen and YOYO-1, 1 μM, Invitrogen) was used to visualize cytosolic

delivery followed by Calcein AM incubation post-electroporation as a viability indicator (Cal-

cein AM, 1 μM, Invitrogen and Calcein Red-Orange AM, 1 μM, Life Technologies) using fluo-

rescent microscopy. Representative fluorescent images from (a) non-electroporated, (b) dead,

and (c) electroporated cells are shown in Fig 2a–2c. Real-time visualization of membrane-

impermeant molecule delivery into the cytosol was monitored using fluorescent microscopy

(see S1 Movie).

From 2D fluorescent intensity maps (S2 Fig) generated for each voltage using computer-

assisted image recognition code, respective electroporation efficiency, viability, and collected

cell count of HCC827 and HCC827 GR6 at applied input voltages are shown in Fig 2d and 2e.

HCC827 GR6 cells were electroporated with a wide input voltage distribution between 10V

(0.6 kV/cm electric field), 15V (0.9 kV/cm), and 20V (1.2 kV/cm) to identify optimal electro-

poration conditions (Fig 2d). The optimal electroporation condition maximizes cytosolic

Fig 2. Optimization of electroporation parameters for HCC827 GR6 and wt cells. Microscopic images of HCC827 GR6 cells collected post-

electroporation after intracellular delivery of membrane-impermeable fluorophore YOYO-1 (FITC) with Calcein Red-Orange AM (TRITC)

counterstain as viability indicator. Cells were labeled with viable nucleus stain Hoechst-33342 (DAPI, Nucleus) prior to electroporation experiments. (a)

Live cells that were not electroporated, indicated by the absence of YOYO-1 signal, (b) Dead cells lysed by the electroporation process characterized by

the absence of Calcein Red-Orange AM signal, but uptake of YOYO-1, (c) Successful intracellular delivery of YOYO-1 to live cells, indicated by dual

fluorescence of YOYO-1 and Calcein Red-Orange AM. Merged image of all 3 fluorescent channels is shown on the far right of the panel. Scale bars

represent 25 μm. Efficiency (black), viability (blue), and collected cell count (red) were obtained for (d) HCC827 GR6 and (e) HCC827 wt cells. Error

bars represent the standard error of the mean (n = 3,> 150 cells per experiment).

https://doi.org/10.1371/journal.pone.0264907.g002
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delivery while minimizing the amount of cell lysis and size of the bubble formation on the elec-

trodes due to contributions from hydrolysis and joule heating. In the past, the optimum volt-

ages have been previously demonstrated to vary between cell lines [32, 38]. Because the desired

electroporation efficiency (> 70%) of HCC827 GR6 cells was near the higher end of the

applied voltages, HCC827 wt cells were electroporated at 20V and 25V (1.5 kV/cm) (Fig 2e).

The optimal voltage for successful electroporation for both HCC827 wt and GR6 variant was

determined to be 20V due to its high efficiency and consistency (77.4 ± 2.3% and 71.6% ±
0.6% for GR6 and wt, respectively), as well as high viability (69.5 ± 5.0% and 81.7% ± 1.3% for

GR6 and wt, respectively). Side by side comparison of these values between the GR6 and wt

cell lines at 20V can be seen in S3 Fig.

Cells trapped in vortex do not generally come into physical contact with the electrodes.

However, cellular debris from cell bursting due to irreversible electroporation accumulates

onto the electrodes. Both the magnitude of the rate at which debris build up and the generated

bubble size increase proportionally with input voltage. While cell electroporation efficiencies

were augmented at the upper limit voltages, these detrimental factors complicate cell trapping

and thus the accurate assessment of electroporation performance. To mitigate these adverse

effects, the voltage sequence was randomized across devices, and each voltage condition

repeated once per device. While 20V input also generated bubbles, the magnitude of their size

were smaller and thus were able to be quickly dissipated from continual flow into the device,

minimizing impact on the cell trapping capacity of the vortex.

Drug combination to sensitize drug-resistant cells

While tumors may respond to initial front-line therapy, selective pressure from prolonged

drug exposure ultimately leads to the onset of drug resistance. One treatment modality that

has seen developing interest and success in target drug resistance involves synergistic combi-

nations of multiple licensed therapeutic agents [41, 42]. Combinatorial therapy has the poten-

tial to restore therapeutic efficacy in tumors with desensitized drug response. There are

numerous examples in literature employing multi-agent therapy for treating drug-resistant

breast cancer tumors, its success largely due to combinatorial strategies being able to target

multiple sites [43–45]. Model studies involving both drug-sensitive and drug-refractory cancer

cells are a critical intermediate step before screening CTCs from patient liquid biopsy samples.

This study utilizes drug-sensitive and -resistant cell lines as surrogates for therapy refractive

CTCs to validate viability response from combinatorial drug delivery. Gefitinib is well docu-

mented to exhibit a cytotoxic effect on HCC827 wt cells by blocking the EGFR kinase (IC50:

6.47e-3 μM). Prolonged exposure to gefitinib generates HCC827 GR6 clones harboring gefiti-

nib resistance (IC50: 13.4 μM) (S4 Fig). A combination of gefitinib with PHA-665752, a c-

MET inhibitor, restores gefitinib sensitivity in HCC827 GR6 cells [37].

Fig 3 shows the cell viability response over time in response to drug agents from both

HCC827 GR6 and wt cells for electroporation and conventional well-plate control conditions.

Cell density variation impacts from electroporation conditions were minimized by recording

chemiluminescence intensities from two collective runs and precisely matching the length of

time cells are kept in vortex. In addition, electroporation experiments involving single drug

agents and vehicle controls were time-matched to combinatorial drug experiments involving

multiple solution exchange steps by flowing wash buffer solution in place for the drug solution.

Conventional well plate assays plated with roughly the average amount of cells to be collected

from electroporation runs (~250 cells/well) were conducted in parallel to validate the perfor-

mance of our sequential drug delivery system with its anticipated in vitro drug response. Drug

concentration for the conventional well plate assays matched the total drug solute quantity
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flown through the device during the incubation step following electroporation (100 and 20

pmol for gefitinib and PHA-665752, respectively).

A 1:0.2 gefitinib:PHA-665752 drug combination ratio was identified to be optimal for our

system due to consistent drug response from electroporated and well plate controls. Sequential

electroporation-mediated delivery of gefitinib and PHA-665752 to both HCC827 GR6 and wt

cells decreased cell viability and suggests the ability of the system to perform combinatorial

drug sensitivity assessments (Fig 3a and 3b). In electroporation conditions, drug sensitivity to

gefitinib in the wt cells is not observed with the GR6 cells. Electroporation-mediated delivery

of PHA-665752 as a single agent does not elicit a substantial viability decrease in both cell

lines, which is in good agreement with reported literature trends [37, 46, 47]. Compared to

electroporation-mediated delivery, enhanced cytotoxic effects to gefitinib with sensitive wt

cells could be attested to constant exposure to drugs in the well-plate controls over 72 hours.

Interestingly, electroporation of PHA-665752 in wt cells showed a slight decrease in viability,

Fig 3. Drug response curves of HCC827 cells to gefitinib and PHA-665752. Viability response of (a) HCC827 GR6 and (b) wt cells after

electroporation in gefitinib (100 nM), PHA-665752 (20 nM), or a sequential combination of both at time points 24, 48, and 72 hrs. Control

conventional well-plate assays of (c) HCC827 GR6 and (d) wt cells, respectively, containing an identical solute quantity of drugs flown into the device

during the electroporation step (100 and 20 pmol for gefitinib and PHA-665752, respectively). Shown viability% is normalized by the luminescence

intensity of untreated control cells in their respective condition. Relatively high standard deviations associated with the collected cell counts can be

attributed to repeated electroporation of cells on the same device, leading to eventual debris buildup on the electrodes, interfering with consistent cell

capture. Error bars represent the standard error of the mean (n = 3). �p<0.1 vs gefitinib (control) groups.

https://doi.org/10.1371/journal.pone.0264907.g003
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which could suggest that increased cellular influx of the drug-enhanced cytotoxic effects [48].

Well-plate controls of HCC827 GR6 and wt cells were conducted in parallel to validate electro-

poration experiments and exhibited synonymous drug response trends over time with electro-

porated cells for all drug conditions (Fig 3c and 3d).

Cell purification and subsequent drug screening

CTCs are attractive as a routinely obtainable source of patient cells for clinical applications, as

they reflect the real-time genomic state of the tumor [13, 49]. Purity challenges complicate

downstream functional interrogations of CTCs, a lack of which also currently remains as a

large roadblock for its clinical adaptation. Vortex-assisted cell purification systems allow for

the facile capture and purification of large cancer cells with minimal contamination from

smaller blood-borne components (red and white blood cells) [50]. Because their mechanism

responsible for drug resistance is well-documented, HCC827 GR6 cancer cells were spiked

into the blood to emulate drug-resistant CTCs as concept validation of our drug response

assay workflow.

HCC827 GR6 cells spiked into whole diluted blood were processed for drug response

screening using our system (S2 Movie). Experiments involving single-agent electroporation in

PHA-665752 were omitted due to the negligible impact seen previously in viability response

(Fig 3a). Fig 4a shows the purity, described as the ratio between RBC and WBC to cancer cells

(94.6 ± 23.1 and 0.140 ± 0.057 for RBC and WBC, respectively), collected at the outlet. The

impact from these blood cells onto cell viability readings was deemed negligible due to low

occurrence. Control experiments for cells incubated in the drug solution incubation without

electroporation were done in parallel (dashed lines). Fig 4b shows the cell viability with and

without electroporation in response to drug agents for HCC827 GR6 cells spiked into the

Fig 4. Spiked blood sample purity assessment and drug response curve. Spiked cancer cells (HCC827 GR6) were isolated from the blood and

subsequently electroporated for drug combination testing. (a) Purity of isolated cancer cells (expressed in ratios relative to WBC and RBC counts). The

number of contaminant blood-borne cells was deemed insignificant for interfering with luminescence assay. Error bars represent standard error of

mean (n = 24) (b) Viability response of HCC827 GR6 after electroporation in gefitinib solution (100 nM) or a sequential combination of both (PHA-

665752, 20 nM) at time points 24, 48, and 72 hrs (solid line). Control experiments without electroporation step during drug solution incubation are

shown with dashed lines (100 and 20 pmol for gefitinib and PHA-665752, respectively). Shown viability% is normalized by the luminescence intensity

of untreated (DPBS) control cells in their respective condition. Error bars represent the standard error of the mean (n = 3). �p<0.1 vs gefitinib

(electroporation) groups. #p<0.1 vs gefitinib + PHA-665752 (- EP) groups.

https://doi.org/10.1371/journal.pone.0264907.g004
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blood. Incubation of HCC827 GR6 cells in drug solutions without electroporation for all con-

ditions did not have an adverse effect on cell viability. Additionally, similar drug response

trends are observed between electroporated cells, and well-plate controls over the course of 72

hours (Fig 3), suggesting that decreased viability in blood electroporation experiments mainly

reflects drug combination mediated cytotoxicity.

The number of CTCs per mL of whole blood in cancer patients remains largely debated, as

counts vary depending on the type and stage of cancer, as well as the CTC isolation technique

used [51–53]. Regardless of the volume of liquid biopsy samples processed with our chip, vor-

tex-based isolation techniques concentrate trapped cell populations into a small volume, and

various downstream assays can be streamlined into the simple collection process. While it is

true that using clinically relevant CTC concentrations found in blood would decrease the

overall number of trapped cells using our system, future work should be dedicated towards

rarer cell applications and integration with sensitive, single-cell based assays [54]. Calcein

AM is a fluorescent-based viability indicator measuring intracellular esterase activity from

individual cells, which is ideal for rare cell populations. Calcein AM is also a real-time indica-

tor of intracellular oxidative activity, a critical physiological measurement implicated in

tightly regulating cell proliferation, survival, and death [55–57]. As such, monitoring ratios of

live and dead cells populations, as well as Calcein fluorescent intensities, have been qualita-

tively utilized to assess cytotoxic efficacies from prolonged (7 days) combinatorial Doxorubi-

cin and aspirin treatment in cancer cell clusters [58]. Therefore, future studies applying

Calcein intensity measurements from inherently rare patient CTCs, using a combination of

both our workflow and fluorescent intensity map pipeline, as an alternative to assess viability

response, are warranted.

Conclusion

Current cancer treatment strategies are guided by the molecular expression and genomic sta-

tus information derived from solid biopsies of the primary tumor. However, evolution of the

molecular expression and genomic information from the tumor during disease progression

necessitates longitudinal monitoring in order to guide appropriate treatment avenues. Liquid

biopsies are an emerging alternative to solid biopsies because it entails a less-invasive sampling

procedure that contains a more representative population of cells and analytes detailing the

current tumor status. Despite their immediate relevance in clinical application, purification

and analysis of these target analytes within liquid biopsies remain hurdles in their standardiza-

tion and utility.

Detailed functional measurements from CTCs are essential for guiding clinical decisions

regarding drug treatment modalities. However, CTC isolation from peripheral whole blood as

well as in situ analysis represents an unmet need in order to identify effective therapeutic strat-

egies [59]. Here, we present an integrated workflow that can assess therapeutic response from

unaltered cancer cells spiked into blood, an essential first step towards profiling CTCs from

patient samples. We systematically ascertained ideal electroporation parameters for cellular

membrane permeabilization using on-chip electroporation visualization and automated cell-

by-cell image classification sequence, a procedure that can be readily applied to optimize elec-

troporation of native CTCs. Gefitinib-resistant cancer cells emulating drug-refractory CTCs in

blood samples were purified with trace background contaminants and subsequently electropo-

rated to deliver a combinatorial drug regime ablating resistance. Cancer cells processed within

our system for drug viability assay reflected behavior as expected when compared to our con-

ventional control experiments, suggesting the utility of electroporation as a delivery system

and promising extension towards characterizing the response profiles from CTCs with high
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fidelity and reproducibility. Development of this workflow for the clinic is critical towards

realizing the promises functional liquid biopsy interrogation has towards longitudinal moni-

toring of disease treatment and relapse.

In conclusion, our proposed workflow demonstrates potential for translation into clinical

and point of care settings for functional interrogations of CTCs obtained from patient samples.

The versatility of our delivery system can incorporate therapeutic agents whose membrane dif-

fusion or delivery efficiencies may not currently be well established, and could also facilitate

the discovery of novel therapeutic combinations. We underscore the ability of our platform to

retain the viability of cells throughout the drug electroporation process. This device has the

potential to address the manufacturing of cell lines derived from CTCs, which has also been a

critical hurdle due to cellular senescence and viability challenges [27]. Retaining viability is

also critical for characterizing expression profiles and invasive behavior from CTCs demon-

strating the most aggressive metastatic capacity [60]. Such studies may broaden our under-

standing of cancer biology through better elucidation and study of CTCs as the key driver in

orchestrating the metastatic cascade.

Supporting information

S1 Movie. Real-time visualization of membrane-impermeable molecule delivery. Initial

trapped cells are visualized by NucBlue staining (Hoechst 33342, DAPI). After electroporation

pulses, membrane-impermeable molecule (YOYO-1, FITC) delivery into the cytosol can be

monitored using fluorescent microscopy in real time, allowing for rapid electroporation

parameter adjustments.

(MP4)

S2 Movie. Blood purification and subsequent drug electroporation. Drug-resistant cancer

cells spiked into the blood can be processed using inertial microfluidics mediated vortex sepa-

ration. Shortly after purification, trapped cancer cells are electroporated for integrated drug

response assays.

(MP4)

S1 Fig. Representative microscopic images of the electroporation sequence. The white

dashed lines outline the cell trapping chambers. Cancer cells (HCC827 GR6), pre-stained with

live-cell nucleus marker Hoechst 33342, are isolated into cell-trapping microvortices. Cytosolic

delivery via electroporation is visualized by detecting fluorescent signals of a membrane-

impermeable dye Propidium Iodide (PI, 15 μM) from trapped cells. Fluorescent images of cells

incubated in PI solution are taken before (Molecular Incubation) and after (Molecular Deliv-

ery) electroporation. Dead cells uptake PI prior to electroporation (red box). Successful elec-

troporation is indicated by the overlap of PI and nucleus marker fluorescent signals (purple

box). Cells that are not electroporated are indicated by the absence of PI fluorescent signals

after electroporation (blue box). Scale bar = 200 μm.

(TIF)

S2 Fig. Generated 2D fluorescent intensity maps from each collected cell after

electroporation in (a) 0V, (b) 10V, (c) 15V, and (d) 20V. Thresholding for determining suc-

cessful electroporation (e) and cell viability (f) are described in the materials and methods sec-

tion. Thresholding divides the intensity maps into 4 distinct quadrants, where the Calcein

+/YOYO-1—quadrant represents viable but un-electroporated cells, Calcein -/YOYO-1

+ quadrant represents dead cells presumably burst by the electroporation procedure, and Cal-

cein +/YOYO-1 + quadrant represents viable and successfully electroporated cells. Calcein

-/YOYO-1—quadrant represents cells that have fluorescent intensities too low to be
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considered for electroporation efficiency assessment. n> 150 cells for each intensity map

from experiments in triplicates.

(TIF)

S3 Fig. Side-by-side electroporation efficiency assessment for HCC827 cell line at 20V. Effi-

ciency (a, black), viability (b, blue), and collected cell count (c, red) are reported for GR6

(dark) and wt (light). The optimal voltage for successful electroporation for both HCC827 wt

and GR6 variant was determined to be 20V due to consistent performance. Error bars repre-

sent standard error of mean (n = 3).

(TIF)

S4 Fig. Dose-response curves from (a) HCC827 GR6 and (b) HCC827 wt in response to

gefitinib. Cells (4000 cells/well) in conventional opaque assay well plates were treated with

gefitinib at the indicated concentrations and measured for viability after 72 hours using the

RealTime-Glo™ MT Cell Viability Assay Kit. Viability % is shown relative to untreated

(DMSO) control wells. IC50 values were determined by using nonlinear regression analysis

(variable slope, 4 parameter) and determined as the concentration where percent inhibition of

cell viability relative to vehicle (DMSO) well is equal to 50%. Error bars represent standard

error of mean (n = 3).

(TIF)

S5 Fig. (a) HCC827 GR6 cells per well were plated on conventional 96-well assay plates and

monitored for change in luminescence over time (0, 24, 48, 72 hrs). (b) Fold-change in lumi-

nescence linearly correlates over time, suggesting that the overall fold-change impact from var-

ious starting cell counts is negligible. A lower fold-change in luminescence, especially in low

cell counts, could be attributed to difficulties in measuring low signals. Error bars represent

standard error of mean (n = 3).

(TIF)
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